Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

Identifieur interne : 000210 ( Main/Exploration ); précédent : 000209; suivant : 000211

Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

Auteurs : Gwenaëlle Lashermes [France] ; Angélique Gainvors-Claisse [France] ; Sylvie Recous [France] ; Isabelle Bertrand [France]

Source :

RBID : pubmed:27617006

Abstract

Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and the substrate. The investment decreased when N was limited, whereas the efficiency of the C-acquiring enzymes was primarily explained by the hemicellulose content and its embedment in recalcitrant lignin linkages. Our results are crucial for modeling microbial allocation strategies.

DOI: 10.3389/fmicb.2016.01315
PubMed: 27617006
PubMed Central: PMC4999447


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.</title>
<author>
<name sortKey="Lashermes, Gwenaelle" sort="Lashermes, Gwenaelle" uniqKey="Lashermes G" first="Gwenaëlle" last="Lashermes">Gwenaëlle Lashermes</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gainvors Claisse, Angelique" sort="Gainvors Claisse, Angelique" uniqKey="Gainvors Claisse A" first="Angélique" last="Gainvors-Claisse">Angélique Gainvors-Claisse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Reims-Champagne Ardenne, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Reims-Champagne Ardenne, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Recous, Sylvie" sort="Recous, Sylvie" uniqKey="Recous S" first="Sylvie" last="Recous">Sylvie Recous</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Isabelle" sort="Bertrand, Isabelle" uniqKey="Bertrand I" first="Isabelle" last="Bertrand">Isabelle Bertrand</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France; INRA, UMR1222 Eco&SolsMontpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France; INRA, UMR1222 Eco&SolsMontpellier</wicri:regionArea>
<wicri:noRegion>UMR1222 Eco&SolsMontpellier</wicri:noRegion>
<wicri:noRegion>UMR1222 Eco&SolsMontpellier</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27617006</idno>
<idno type="pmid">27617006</idno>
<idno type="doi">10.3389/fmicb.2016.01315</idno>
<idno type="pmc">PMC4999447</idno>
<idno type="wicri:Area/Main/Corpus">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000196</idno>
<idno type="wicri:Area/Main/Curation">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000196</idno>
<idno type="wicri:Area/Main/Exploration">000196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.</title>
<author>
<name sortKey="Lashermes, Gwenaelle" sort="Lashermes, Gwenaelle" uniqKey="Lashermes G" first="Gwenaëlle" last="Lashermes">Gwenaëlle Lashermes</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gainvors Claisse, Angelique" sort="Gainvors Claisse, Angelique" uniqKey="Gainvors Claisse A" first="Angélique" last="Gainvors-Claisse">Angélique Gainvors-Claisse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Reims-Champagne Ardenne, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Reims-Champagne Ardenne, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Recous, Sylvie" sort="Recous, Sylvie" uniqKey="Recous S" first="Sylvie" last="Recous">Sylvie Recous</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:regionArea>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
<wicri:noRegion>UMR614 Fractionnement des AgroRessources et Environnement Reims</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Isabelle" sort="Bertrand, Isabelle" uniqKey="Bertrand I" first="Isabelle" last="Bertrand">Isabelle Bertrand</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France; INRA, UMR1222 Eco&SolsMontpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France; INRA, UMR1222 Eco&SolsMontpellier</wicri:regionArea>
<wicri:noRegion>UMR1222 Eco&SolsMontpellier</wicri:noRegion>
<wicri:noRegion>UMR1222 Eco&SolsMontpellier</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and the substrate. The investment decreased when N was limited, whereas the efficiency of the C-acquiring enzymes was primarily explained by the hemicellulose content and its embedment in recalcitrant lignin linkages. Our results are crucial for modeling microbial allocation strategies. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27617006</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.</ArticleTitle>
<Pagination>
<MedlinePgn>1315</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2016.01315</ELocationID>
<Abstract>
<AbstractText>Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and the substrate. The investment decreased when N was limited, whereas the efficiency of the C-acquiring enzymes was primarily explained by the hemicellulose content and its embedment in recalcitrant lignin linkages. Our results are crucial for modeling microbial allocation strategies. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lashermes</LastName>
<ForeName>Gwenaëlle</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gainvors-Claisse</LastName>
<ForeName>Angélique</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Université Reims-Champagne Ardenne, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Recous</LastName>
<ForeName>Sylvie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR614 Fractionnement des AgroRessources et Environnement Reims, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bertrand</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France; INRA, UMR1222 Eco&SolsMontpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">carbon-use efficiency</Keyword>
<Keyword MajorTopicYN="N">enzyme efficiency</Keyword>
<Keyword MajorTopicYN="N">extracellular enzymes</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">lignocellulose decomposition</Keyword>
<Keyword MajorTopicYN="N">litter quality</Keyword>
<Keyword MajorTopicYN="N">soil</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27617006</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2016.01315</ArticleId>
<ArticleId IdType="pmc">PMC4999447</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecol Lett. 2008 Nov;11(11):1252-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Sep;73(3):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Oct 20;339(15):2529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15476714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Jun;68(6):2965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 29;9(9):e108769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jul;16(7):930-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23627730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Jan;79(1):109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22067023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Oct;17(10):1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25040202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Feb 03;5:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Oct;15(10):1180-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Aug 12;4:223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23964272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Oct 05;4:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Feb;75(2):291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Feb;62(2):415-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Feb;44(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Oct 28;5:571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25389423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2014 Dec;90(3):543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25314312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(1):79-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Mar;93(5):2075-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22290653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 May;67(5):2051-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2016 Apr;97(4):1023-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27220218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Apr;19(4):988-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2012 Sep 26;3:348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2013 Nov 15;(81):e50961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24299913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Dec;71(3):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Sep;15(9):1058-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22642621</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Lashermes, Gwenaelle" sort="Lashermes, Gwenaelle" uniqKey="Lashermes G" first="Gwenaëlle" last="Lashermes">Gwenaëlle Lashermes</name>
</noRegion>
<name sortKey="Bertrand, Isabelle" sort="Bertrand, Isabelle" uniqKey="Bertrand I" first="Isabelle" last="Bertrand">Isabelle Bertrand</name>
<name sortKey="Gainvors Claisse, Angelique" sort="Gainvors Claisse, Angelique" uniqKey="Gainvors Claisse A" first="Angélique" last="Gainvors-Claisse">Angélique Gainvors-Claisse</name>
<name sortKey="Recous, Sylvie" sort="Recous, Sylvie" uniqKey="Recous S" first="Sylvie" last="Recous">Sylvie Recous</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27617006
   |texte=   Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27617006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020